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Abstract: Column flotation is a multivariable process. Its optimization guarantees the metallurgical yield 

of the process, expressed by the grade and recovery of the concentrate. The present work aimed at 

applying genetic algorithms (GAs) to optimize a pilot column flotation process which is characterized by 

being difficult to be optimized via conventional methods. A non-linear mathematical model was used to 

describe the dynamic behavior of the multivariable process. The solution of the optimization problem 

using conventional algorithms does not always lead to convergence because of the high dimensionality 

and non-linearity of the model. In order to deal with this process, the use of a genetic evolutionary 

algorithm is justified. In this way, GA was coupled with the multivariate non-linear regression (MNLR) 

of the column flotation metallurgical performance as a fitting function in order to optimize the column 

flotation process. Then, this kind of intelligent approach was verified by using mineral processing 

approaches such as Halbich’s upgrading curve. The aim of the optimization through GAs was searching 

for the process inputs that maximize the productivity of copper in the Sarcheshmeh pilot plant. In this 

case, the simulation optimization problem was defined as finding the best values for the froth height, 

chemical reagent dosage, wash water, air flow rate, air holdup, and Cu grade in rougher and column feed 

streams. The results indicated that GA was a robust and powerful search method to find the best values of 

the flotation column model parameters that lead to more reliable simulation predictions at a reasonable 

time. Based on the grade–recovery Halbich upgrading curve, the MNLR model coupled with GA can be 

used for determination of the flotation optimum conditions. 

Keywords: flotation column, optimization, genetic algorithm, non-linear regression, upgrading curve  

Introduction 

Column flotation is a widely used process for the concentration of low grade ore as 

well as recycling and solvent extraction. As a consequence of the widespread flotation 

circuits that have occurred during the past few years, there has been a rapid growth in 

http://www.minproc.pwr.wroc.pl/journal/
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practical knowledge in relation to column design, structure, operation, optimization, 

and control. Flotation processes are difficult to optimize at a fundamental level, and at 

present automatic monitoring and control of industrial plants have met with limited 

success. Practically, these processes are most often controlled by human operators 

who tend to evaluate the performance of the plant based on their own experience and 

other heuristic rules. Full potentials of plants are usually not used optimally, owing to 

lack of experience on the part of the operators, human error, etc. Indeed, considerable 

variation is sometimes observed between different shifts, or during different times of 

the day. These operational instabilities are considered to play a significant role in the 

cost-effective operation of flotation plants. 

Some attempts have recently been made at the development of decision support 

systems that would assist the operator controlling the plant. Although these systems 

have met with varying degrees of success, it was only with the advent of on-line 

sensors that effective data-driven development of expert systems could be initiated. 

Due to the lack of reliable techniques for optimizing variables on-line in the industrial 

and pilot environments, as well as complexity and difficulty of modeling flotation 

processes, new methods such as artificial intelligence (AI) must be employed. Mineral 

processing is a field that has seen limited application of AI although there are certainly 

some successful examples. 

Achieving the maximum grade and recovery of concentration of column flotation 

is an important research topic that a mineral processing plant is planned to reach by 

optimization of the operation conditions. This issue is to minimize the distance of a 

desired metallurgical performance with real observations in the plant. Despite the 

considerable investment in the study of this issue and the numerous reported studies, 

there is a still lack of knowledge about operation optimal conditions for the flotation 

column. The description of the optimum conditions is a complex task. The transient 

behavior of this process is even more difficult to explain, being the dynamic model 

constituted by a large number of differential equations with several difficult 

parameters or impossible estimation (Vieira et al., 2005). To overcome the difficulties 

in the development of optimizing models, the development of intelligent models based 

on experimental data is used. One of the most commonly used techniques is called 

genetic algorithm (GA). 

The performance of the flotation column is determined by grade and recovery, but 

a key determinant is the optimization of the parameters that constitute the flotation 

operation. Optimization guarantees that the column operation reaches the reference 

values necessary for the desired recovery and grade of the concentrate stream. 

According to previous investigations, GA is a powerful tool for optimizing the 

complex processes such as the flotation column. The metallurgical performance of the 

column flotation is a function of a broad group of variables present in flotation: 

chemical dosage, gas holdup, froth height, feed characteristics, solids content, and air, 

and wash water flow rates, etc., Therefore, the knowledge of the independent variables 



F. Nakhaei, M. Irannajad, M. Yousefikhoshbakht 876 

should be useful at the time of optimizing and controlling the operation of the flotation 

column. 

This paper shows the capability of an evolutionary algorithm which was coupled 

with the multivariate non-linear regression (MNLR) model in order to optimize the 

flotation column operation parameters. The multiple regression methods is a powerful 

modelling technique frequently used to make predictions from several independent 

variables. The proper selection of regression techniques is one of the most important 

factors to the success of prediction modeling. Since most of the regression algorithms 

currently available do not directly consider interaction effects during the modeling 

process, the interaction terms must be subjectively determined prior to performing a 

regression analysis. Various non-linear models were fitted to data and for each model 

residual analysis were performed by plotting predicted vs. observed values.  

Researchers based on statistical techniques usually treat, incorrectly, grade and 

recovery independently. Moreover, generally, engineers would like to see the 

recovery-grade curves to understand how far from the ideal conditions. Therefore, it is 

essential to use upgrading curves (Drzymala, 2006; 2007), that are plotted as quality 

vs. either quantity or quality of separation products (Drzymala et al., 2012). One of the 

mostly used upgrading curves is the Halbich grade-recovery curve. The Halbich plot is 

practical and useful as well as has many advantages over other upgrading curves 

because of using recovery and grade, which are generally used in industrial, liberation, 

kinetic, and theoretical studies (Drzymala et al., 2012). Therefore, in this paper, the 

optimization process in terms of mineral processing was analyzed using the upgrading 

curve. 

In this study, the proposed method was validated using data from a case study done 

on the samples of the flotation column at the Sarcheshmeh copper pilot plant. The rest 

of this paper was organized as follows: one section discusses GA concepts and its 

related studies in mineral processing. A next section briefly reviews the experimental 

work and introduces the Sarcheshmeh pilot plant. Finally, the results of the proposed 

approach and conclusions of this study were taken into consideration.  

Background 

GAs have been applied successfully in many manufacturing and engineering areas 

such as economics, control, optimization, electrical machining process etc. (Goldberg 

et al., 1989; Holland, 1975; Deb, 1995; Chang et al., 2006; Victorino, et al., 2007). It 

consists of a population of artificial agents imitating the animals’ behavior in the real 

world. GAs are inspired by evolutionary biology. Since GAs have the global searching 

ability, and they can also be easily implemented, they are widely used in many areas 

(Chen et al., 2011). In recent years, GA methods have been successfully presented by 

several researchers for the optimization of crushing, grinding, and flotation plants 

(Barone et al., 2002; Karr, 1993, 1996, 1997; Venter et al., 1997; While et al., 2004; 

Hasanzadeh and Farzanegan, 2011). 
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Venter et al. (1997) proposed an approach from the field of GA for flow sheet 

design. The strength of the work was that circuits could be assembled with the GA 

approach. However, full process optimization of the assembled circuit remained 

elusive. Karr et al. (1996, 1997) used a combination of fuzzy logic and GA for three 

different applications in mineral processing, a grinding process and size separation 

process for hydrocyclone and froth recovery maximization for the flotation circuits. 

The process parameters were controlled using a fuzzy logic based model and GA was 

used to determine the necessary condition for the optimal performance of the 

processes. Svedensten and Evertsson (2005) presented a successful GA for the 

optimization of crushing plant operation. In this work, a novel method for the 

modelling and optimization of crushing plants was shown based on the structural 

modeling of crushing plants and parameter optimization. Structural modelling was 

performed by utilizing mathematical models of the different production units, rock 

materials, and economics of the crushing plant. The efficiency of the proposed 

algorithm was demonstrated concerning a crushing plant which contained a small 

number of machines. Gupta et al. (2007) developed a plant optimization technique 

using GA to maximize the overall revenue generated by a coal preparation plant by 

searching the best possible combination of overall yield and multiple product quality 

constraints. 

Over the years, considerable progresses have been made in various aspects of 

design of flotation circuits, especially in finding the optimal number of flotation cells. 

Guria et al. (2005, 2006) used GA for the optimization of the performance of flotation 

circuits. In these studies, GA allowed the evolution of an initial population of circuit 

solutions by numerical operations which simulated the probabilities of reproduction, 

crossing or mutation. An extensive review by Mendez et al. (2009) on the conceptual 

design of flotation circuits provided a solid base to compare various approaches taken 

to solve this multi-objective optimization problem. Rezende et al. (2008) employed 

GAs to optimize an industrial chemical reactor. The results illustrated that the GAs 

were successfully used in the process optimization. Ghobadi et al. (2011) used GA for 

the optimization of the performance of flotation circuits. The algorithm was applied 

for two optimization examples with the objective of achieving a desired concentrate 

grade within a specific total cells volume. The comparison of the results with the 

published data indicated that the proposed oriented GA reduced the calculation time 

by 1/60 for a two-stage flotation system, and provided a simpler circuit with a similar 

performance. 

Genetic algorithm 

Recent advances in computer hardware and software allowed researchers to develop 

new search strategies to be used in function optimization problems. Therefore, it is 

now possible to better integrate optimization algorithms into simulation packages such 

as GA. Nowadays, the optimization has been used in many applications, including 
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transportation, biological and medical sciences, business, computer science, 

engineering, and social science to solve real process problems. GA has also found 

various applications in mineral processing, including process control, circuit design, 

pattern recognition of multivariate data, optimization of parameters, crushing, and 

comminution. GAs are global optimization search algorithms inspired by Darwin’s 

theory of survival of the fittest because it makes an analogy with biological evolution 

(Wang, 2005). Holland (1975) introduced an optimization procedure that mimicked 

the process observed in natural evolution called GAs. The GAs approach starts with a 

random population of chromosomes that are a set of solutions for the optimization. 

 

Fig. 1. Flowchart of GA procedure 

Selection 

While performing the selection operations, the system uses either the tournament 

selection or the roulette wheel selection to select chromosomes with higher fitness 

values into the gene pool to perform the crossover operation. The purpose of the 

selection operation is that the chromosomes with larger fitness values are chosen to 

participate in the production of the next generation (Baker, 1985). 

Crossover 

Crossover operator consists of picking up two chromosomes as parents from the 

mating pool at random and exchanging some portion of the solutions between 

themselves. The system compares a randomly generated number with a predefined 

crossover rate between 0 and 1. If the randomly generated number is smaller than or 

equal to the crossover rate, then the system randomly chooses a crossover point and 

exchanges the genes after the crossover point to generate two offsprings. Then, the 

system puts these two offsprings into the gene pool, where the size of the gene pool is 

equal to the size of the population. Otherwise, the system puts these two chromosomes 
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back into the gene pool (Costa et al., 2005). The crossover operation will be performed 

repeatedly until the gene pool is full. The goal of the crossover operation is to spend 

the solution space in order to search for better solutions (Chen and Chien, 2011). 

Previous experiences showed that a good crossover rate usually was set around 0.7–

0.8 (Shopova et al., 2006). 

Mutation 

After the crossover operation, the system chooses a certain number of chromosomes 

from the gene pool to carry out the mutation operation. The system compares a 

randomly generated number with a predefined mutation rate between 0 and 1. If the 

randomly generated number is smaller than or equal to the mutation rate, then the 

system randomly selects some genes of the selected chromosome to mutate, i.e., to 

alter the values of the genes. Then, it puts the mutated chromosome back into the gene 

pool. Otherwise, it keeps the chromosome unchanged, and puts it back into the gene 

pool. After the mutation operation, the chosen chromosomes will be put back into the 

gene pool. It should be noted that not every generation will do the mutation. Mutation 

is forced for some newly formed children in order to prevent all solutions from 

converging to their particular local optima (Chen and Chien, 2011). 

Calculate the fitness value 

After the crossover and the mutation processes, the GA will calculate the fitness value 

of each chromosome by a fitness function, where chromosomes with higher fitness 

values will be selected from the gene pool for reproduction in the next generation. The 

GA stops if the terminated condition or the maximum number of generations is 

achieved. Otherwise, it will return to the selection process (Chen and Chien, 2011). 

Experimental work 

Description of pilot plant  

The Sarcheshmeh copper ore body, which may be ranked as the third or fourth largest 

in the world, contain 1 petagram of ore averaging 0.90% copper and 0.03% 

molybdenum (Nakhaei et al., 2012). The Sarcheshmeh pilot plant can process 1.6 

Mg/h of ore. The main responsibility of the pilot plant is to find the optimum 

operating conditions (i.e., reagent type and dosage, pH value, grind size, etc.) in the 

processing of various ore types, and to evaluate any changes in the circuit before 

implementing in the plant. The rougher flotation bank consists of 14 cells (35 dm
3
 

each) in three units, and the regrind mill is a 76.2 cm by 137.2 cm ball mill. The 

scavenger banks have 6 cells (30 dm
3
 each). The single-stage flotation column 

operation employed in the cleaner circuit was composed of a column with 26 cm 

internal diameter and 540 cm height. Figure 2 illustrates the flotation circuit examined 

in this study. The pilot flotation column was equipped with flow meters for feed, wash 



F. Nakhaei, M. Irannajad, M. Yousefikhoshbakht 880 

water, and air as well as with a conductivity profile. Local control loops were 

implemented to regulate feed, tails, wash water, and air flow rates. Two 23 cm long 

spargers were used, which were made of PVC tubes. The holes of 1.5 mm in diameter 

in a grid with dimensions of 2.5 cm×2 cm were drilled. The air flow rate was 

measured by a mass flow meter and controlled by a pneumatic control valve of globe 

type. The feed was transferred to the column 1.8 m down from the top through a 3.75 

cm diameter pipe which was connected to the middle of the column. 

Figure 3 illustrates a schematic diagram of the flotation column employed in this 

study. The wash water flow rate was measured using an electromagnetic flow meter, 

and was controlled by a pneumatic valve. Additionally, the air flow rate was measured 

by a mass flow meter, and was controlled manually using a flow meter. The pulp 

feeding was controlled via a pneumatic valve, and was measured by an 

electromagnetic flow meter. The pulp-froth interface position was measured using a 

semi-analytical method according to the conductivity profile along the column. The 

conductivity profile sensor consisted of 30 ring electrodes mounted on a 1.8 m long 

stainless steel tube with a diameter of 1.5 cm. The non-floated flow rate was also 

controlled by a variable-speed peristaltic pump driven by a frequency inverter. The 

pressure measurements were used to calculate the values of the air holdup and of the 

froth layer height. The data-acquisition system was also connected via a port to a 

microcomputer.  

 

Fig. 2. Flow sheet of the flotation circuit  

of the Sarcheshmeh pilot plant 

Fig. 3. Schematic diagram of the flotation  

column employed in this study 

Experimental data  

The flotation experiments were carried out in the Sarcheshmeh pilot plant (Fig. 2). The 

experimental work (four tests) was conducted under different operational conditions. 

Each experiment consisted of a series of step disturbances of several variables. The 

most important step in the developing of an MNLR model was to collect the data that 

could be employed for the modelling. Therefore, a series of reliable pilot data was 

collected over a period of 13 min based on RTD (Nakhaei et al., 2012) in order to 
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cover the fluctuations in all the measured variables related to the metallurgical 

performance prediction the flotation column. A total of 90 data pairs were selected 

from the experimental database. The simultaneous measured variables were chemical 

reagents dosage, froth height, air and wash water flow rates, gas holdup, Cu grade in 

the rougher feed and column feed streams as independent variables as well as Cu 

grade and recovery in the final concentration stream as dependent variables. Similarly, 

the column tail stream was measured for the calculation of recovery, simultaneously. 

The ranges of the input and output variables for the metallurgical performance of 

mathematical formulation (MNLR model) of the 90 samples are shown in Table 1. 

Table 1. Maximum and minimum of variables used in MNLR 

Variables Range Mean Std. Index 

Froth height (cm) 35-120 83.61 20.52 X1 

Collector dosage (g/Mg) 36-40 38 1.64 X2 

Frother dosage (g/Mg) 32-36 34 1.64 X3 

Air holdup (%) 71-92 82.36 4.1 X4 

Air flow rate (cm/s) 0.63-1.72 1.1 0.25 X5 

Wash water flow rate (cm/s) 0.11-0.4 0.27 0.08 X6 

Cu grade in the rougher feed (%) 0.77-0.93 0.82 0.04 X7 

Cu grade in the flotation column feed (%) 6.95-11.96 8.89 1.22 X8 

Cu grade in the flotation column concentrate (%) 15.93-25.21 21.13 2.12 Fc 

Cu recovery in the flotation column (%) 83.34-91.27 87.33 1.75 Re 

Cu grade in the flotation column tail (%) 1.05-2.68 1.81 0.45 - 

 

In all tests, the rougher feed flow rate was kept at 1.6 Mg/h. The particle size 

characterization and solid percent data of the sample are presented in Table 2. Before 

the flotation, the pulp was first conditioned with Z11 (sodium isopropylxanthate) and 

Nascol 451 (a mixture of mercaptobenzothiazole and sodium di-n-butyldithio-

phosphate) as collectors, and MIBC (methylisobutylcarbonol), Dowfroth 250 (methyl 

-terminated polypropyleneglycols) as frothers. The pH was adjusted to 11.8 with lime. 

The frothers and collectors were added into the rougher cells and ball mill (before the 

flotation circuit), respectively. The chemical analysis and mineralogical composition 

of the samples showed that the ore contained 1.78% CuFeS2, 0.27% Cu2S, and 0.083% 

MoS2. 

Table 2. Flotation conditions used in the experiments (pH=11.8) 

Parameter Rougher feed Column feed Final concentrate Final tail 

Solid (%) 27.0 14.0 14.5 28.0 

–0.044 mm  

(# –325 mesh), % 
48.0 85.0 74.0 54.0 
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Results and discussion  

Multivariate non-linear regression  

In this study, the MNLR models were used. A method that is suitable for this 

procedure is called the iterative nonlinear least squares fitting. This process minimizes 

the value of the squared sum (SS) of the difference between data and fit. However, it 

is different from the linear regression which is an iterative or cyclical process. This 

involves making an initial estimate of the parameter values. The initial parameter 

estimates should be based on prior knowledge of the data or a sensible guess based on 

the function used to fit the data. The first iteration involves computing the SS based on 

the initial parameter values. The second iteration involves changing the parameter 

values by a small amount and recalculating the SS. This process is repeated several 

times to ensure that changes in the parameter values resulted in the lowest possible 

value of SS. The various non-linear models were fitted to data, and for each model 

residual analyses were performed by plotting predicted vs. observed values by SPSS 

19. The performances of the models developed in this study were assessed using 

various standard statistical performance evaluation criteria. The statistical measures 

considered were the correlation coefficient (R) as seen in Eq.1: 

 
( ) ( )( )

2 2 2 2( ( ) )( ( ) )

n XY X Y
R

n X X n Y Y

  


    

 (1) 

where X  stands for predicted values, Y experimental values, and n  is the number of 

datasets. Ultimately, the model with the highest values of the correlation coefficient 

and the least error between observed and predicted values was selected as the target 

model. A total of 90 sets of data were used in the metallurgical performance prediction 

of the flotation column by MNLR. In the first stage, 60 data sets were employed for 

arranging equations stage. When the arrangement was completed, the empirical 

models were validated for its generalization capabilities. The validation for its 

generalization ability was carried out by investigating its capability to predict the 

output sets that were not included in the arranging process. For this purpose, about 30 

new databases were selected. MNLR equations were developed for the prediction of 

the Cu grade and recovery, which were employed for the fitness function in GA by 60 

data set as the following equations: 

 

0.199 0.209 0.165
1 8 4 6

0.608 0.385 0.1 2.288
7 5 2 3

(0.236 exp( )) ( exp(

(0.008 exp( ) 0.762 ) (

0.909))

)

X X X X
Fc

X X X X
  

   


    


 (2) 

 

0.062 0.25 0.05 0.006
5 4 7 8

0.213 0.5 0.067 0.058
1 6 2 3

( exp( ) ( exp( ))
Re

(0.01 ((exp( ) 0.5 ( ))) ( )

4.267 X X X X

X X X X


  


    


 (3) 
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These models were validated using the analysis of variance (Table 3) at a 

confidence level of 95%. 

Table 3. ANOVA obtained from the SPSS output 

Fc 

Source Sum of squares df Mean squares 

Regression 40499.14 10 4049.9 

Residual 72.92 80 0.91 

Uncorrected total 40572.06 90  

Corrected total 400.54 89  

Re 

Source Sum of squares df Mean squares 

Regression 686682.62 11 62425.69 

Residual 84.49 79 1.07 

Uncorrected total 686767.11 90  

Corrected total 274.66 89  

 

The correlations between observed and predicted values via the use of the proposed 

mathematical models at arranging equations stages are shown in Fig. 4. The 

distributions of difference between predicted Cu grade and recovery, and actual 

amounts at arranging equations stages are shown in Fig. 5. The results of agreement 

between measured and predicted values, and prediction error values at validation stage 

are shown in Figures 6 and 7. 

 

Fig. 4. Correlation between estimated and observed values at arranging  

equations stage (a) Cu grade (b) Cu recovery  
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Fig. 5. Distribution of the difference between predicted (a) Cu grade  

and (b) recovery and actual values at validation stage using new data 

 

Fig. 6. Comparison of predicted Cu grade versus 

actual values and estimation error  

values by MNLR in validation process 

Fig. 7. Comparison of predicted Cu recovery  

versus actual values and estimation error  

values by MNLR in validation process 

The initial population will be modified to reach a better answer. At each step, the 

GA selects individuals (chromosomes) from the current population (parents) 

randomly, and uses them to produce the children for the next generation. After several 

generations, according to essence of the GA, it tries to move to the best solution. At 

each step, the GA uses three main types of rules to create the next generation from the 

current population. The GA procedure performs four operations, i.e., selection 

operations, crossover operations, mutation operations, and evaluation operations to 

search the near optimal solution (Shopova et al., 2006; Abedini et al., 2011). The 

selection operator chooses the best solutions in the population. The selection occurs 

with a given probability on the base of fitness functions. The fitness function plays a 

role of the environment to distinguish between good and bad solutions. A particular 

group of parents is selected from the population to generate offspring by defined 

genetic operations of cross-over and mutation. The fitness of all the offspring is then 

evaluated using the same criterion, and the chromosomes in the current population are 
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then replaced by their offsprings based on a certain replacement strategy (Chen and 

Chien, 2011). This procedure is repeated through iterations (or generations) until a 

termination criterion is satisfied. The main operations of GA are shown in Figure 1. 

Table 4 depicts the prediction results of the model in the validation process. The 

MNLR equations predicted the Cu grade and recovery with the correlation coefficients 

of 0.907 and 0.898, respectively, at the validation stage using new data. 

Table 4. Statistical performance evaluation criteria for the proposed  

model performance in validation process 

Predicted variable Cu grade Cu recovery 

Parameter R RMSE Max Min R RMSE Max Min 

MNLR 0.907 0.870 1.650 -1.440 0.890 0.835 1.680 -1.040 

 

According to the above significant results, it can be concluded that the proposed 

multiple nonlinear regression formulas yield significant predictions of the grade and 

recovery. 

Calculation of fitness function 

The principal goal of this pilot plant circuit was to generate a product of the desired 

grade and recovery, i.e. 25% and 89%, respectively. This goal could obviously be 

achieved relatively simple by optimizing the flotation column. The issue described 

above was well suited to an evolutionary computation approach. The problem couldn't 

easily be described analytically, but a GA model was available that could be used to 

find out the optimum conditions. The search space was too large for an exhaustive 

search, and there was little to guide an engineer in determining good condition for a 

given scenario. The fitness function must be defined by the user as a normal 

MATLAB file, and its handle is entered into GA. As mentioned previously, a general 

MNLR equation was proposed using 8 independent variables in order to optimize 

condition operation of the flotation column. 

In the present work, the optimization of a flotation column was performed in order 

to achieve desired values of copper grade and recovery. Solving Eq. (4) provided 

desired values of Cu grade and recovery of the concentration in the flotation column. 

Therefore, the simplified objective function could be defined as seen in Eq. 4:  

 Fitness function =  2 2(25 ) (90 Re)CF   
 

 . (4) 

As the rule of thumb, optimal Cu grade and recovery are set at level 25 and 90%, 

respectively, in the Sarcheshmeh pilot plant. In other words, the optimization problem 

was defined as: what should be the operation conditions to the circuit, so that the Cu 

grade and recovery of final concentration will be equal to 25 and 90%, respectively? 

Applying algorithms based on traditional gradient to optimize problems with several 
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local optimums may result in getting trapped in local optima. In these methods, 

finding the appropriate initial estimates of the parameters which lead to the 

convergence of the global optimum could be difficult. To overcome these limitations, 

various approaches based on evolutionary optimization algorithms have been 

developed. A reliable optimization method which was used in this study was GA. To 

check the claim that GA is suitable for optimization in this case, the convexity of 

fitness function was investigated. It is very hard (if not impossible) to solve most non-

convex problems exactly in a reasonable time. Hence, the idea of using heuristic 

algorithms, which produce desired solutions, is offered. In mathematics, the Hessian 

matrix is a square matrix of second-order partial derivatives of a function. It describes 

the convexity of a function of many variables. If the function is twice differentiable 

and the Hessian is positive semi-definite in the entire domain, then the function is 

convex. On the other hand, if the Hessian matrix has a negative eigenvalue at a point 

in the interior of the domain, then the function is not convex. 

The results of the second partial derivative test show that Re and Fc functions are 

non-convex functions, so that: 
∂2𝑅𝑒

∂𝑋1
2 < 0   𝑎𝑛𝑑 

∂2𝐹𝑐

∂𝑋1
2 < 0. Therefore, the Eq. 4 is not 

convex and it has a local optimal point. 

Study of GA parameters 

Computer simulation of column flotation operation is an active research field in 

mineral processing. Most of the processing units used for the flotation column have 

been mathematically modeled by many researchers during past decades, and a number 

of commercial simulation software packages have been introduced to industrial users. 

However, most of these packages lack numerical search capabilities for simulation 

optimization. One of the important challenges in the column flotation is to find the 

optimum operating conditions to achieve a high-quality product. In such a case, 

optimization is a complicated concept that can be defined differently. There are 

several methods for solving the optimization problem. These methods are either based 

on gradient evaluation or evolutionary methods. In the present work, we implemented 

a GA to optimize the column flotation parameters shown in Fig. 8. In this case, the 

optimization problem was defined as finding the best values for the froth height, 

chemical reagent dosage, wash water, air flow rate, air holdup, and Cu grade in 

rougher and column feed streams. The above-mentioned variables are important 

operating variables, which can normally be manipulated or modified in mineral 

processing plants. The lower and upper bounds values of all parameters that used in 

GA are presented in Table 5. 

The algorithms used in this research were designed in MATLAB Version 2009b. 

The parameters in the GA procedures must be decided upon the population size, the 

number of generation for terminating the search, the ratio of crossover, and the ratio of 

mutation. The values of these parameters used in this study are listed in Table 6. In 

this study, two-point cross-over and uniform mutation operators were used, and the 

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Function_%28mathematics%29
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probability of the cross-over and mutation operators was adjusted at 0.8 and 0.07, 

respectively. Likewise, the GA started with 300 randomly generated chromosomes. 

Figures 9 to 11 display a number of plots generated by the GA during its execution. 

These plots give detailed information about various aspects of the executed 

optimization algorithm. 

 

Fig. 8. Column flotation modelling (model must contain at least eight different variables) 

Table 5. Lower and upper bounds of variables used in GA model 

Variables Lower bound Upper bound 

Froth height (cm) 30 130 

Frother dosage (g/Mg) 32 42 

Collector dosage (g/Mg) 30 40 

Air holdup (%) 70 95 

Air flow rate (cm/s) 0.5 1.8 

Wash water flow rate (cm/s) 0.1 0.5 

Cu grade in the rougher feed (%) 0.7 0.95 

Cu grade in the flotation column feed (%) 5 12.5 

 

Table 6. Parameters of the GA 

Parameter Setting 

Population size 300 

Fitness scaling Rank 

Selection function Roulette 

Reproduction elite count 2 

Crossover fraction 0.8 

Mutation function, ratio of mutation Adaptive feasible, 0.07 

Crossover function Two point 

Migration direction, fraction and interval Forward, 0.2, 20 
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Fig. 9. Convergence of best and mean fitness value Fig. 10. Average distance between individuals 

 during GA execution 

 

Fig. 11. GA execution information on selection function 

Optimization procedure 

In order to optimize the flotation column, GA was coupled with the MNLR model. 

The outcome of the optimization must be a solution that fulfils operator demands, 

which can be achieved via the use of above-described models (Eqs. 2 and 3). The 

models used in the software are fully automated so that the user needs very little 

knowledge of exactly how the modelling works. The optimization process starts by 

searching the models for the optimization parameters of the flotation column. These 

parameters are then included in the optimization routine, which finds the best solution 

within the existing constraints. The simulation results obtained from the mentioned 

GA-based optimization model are listed in Table 7. The results revealed that GAs 

were robust and efficient to find out optimal conditions. It is also worth stressing that 

the GA model demanded around 30 sec in a Pentium 5, 2 GHz Core2Duo CPU, 2 GHz 

RAM computer to find the best steady-state productivity. This is an important aspect 

in real time applications of the GA optimization technique coupled with the high non-

linear and multivariable model. In the light of the above comparative results, it is 

concluded that the proposed GA approach may serve well to optimize other mineral 

processing plant performances. 

In summary, a novel plant optimization technique was developed using GAs to 

maximize the overall grade and recovery by searching the best possible combination 

of operational conditions. The unique features of GA in comparison with other 

techniques, including faster convergence, coverage of a wider search space, the ability 
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to get out of local extreme using mutation technique and the optimization of numerous 

variables at the same time. Therefore, the GAs based optimization approach can be 

applied to address quite for many copper and mineral processing related applications. 

Determining the optimal conditions by the Halbich upgrading curve. 

Table 7. Results obtained with GA 

Optimization variables Best value 

Froth height (cm) 99.25 

Frother dosage (g/Mg) 34.8 

Collector dosage (g/Mg) 39.1 

Air holdup (%) 92.3 

Air flow rate (cm/s) 1.5 

Wash water flow rate (cm/s) 0.41 

Cu grade in the rougher feed (%) 0.84 

Cu grade in the flotation column feed (%) 11.64 

 

It should be noticed that this kind of intelligent approach should be verified by using 

mineral processing approaches. Therefore, the results must be approved and assessed 

in terms of mineral processing. The grade-recovery curves are frequently used because 

they are practical, and indicate several characteristic features of separation results. In 

this study, the new flotation tests (apart from the tests mentioned in this section) were 

carried out by using the full factorial center point repeated experimental design. Three 

important parameters: froth height, air, and wash water rates were chosen as 

independent variables (design factors), and two levels of these variables with their 

base points were used to generate data for 2
3
 factorial design. The variables and their 

levels are given in Table 8. It should be noted that other variables were considered 

constant (frother dosage: 40 g/Mg, collector dosage: 34 g/Mg, Cu grade in the rougher 

feed: 0.8%). Moreover, Cu grade in the flotation column feed was about 10.8-11%. 

Table 8. Variables and their levels flotation factors 

High Level (+1) Mid Level (0) Low level (–1) Variable 

100 70 35 A, froth height, cm 

1.5 1.1 0.7 B, air rate, cm/s 

0.35 0.2 0.1 C, wash water rate, cm/s 

 

 

The factorial design which consists of the factors, levels, and values are also given 

in Table 9. In the design matrix, the higher level was designated as “+1” whereas the 

lower one and mid-point were designated as “–1” and “0”, respectively.  
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Table 9. Factorial design matrix and responses 

Recovery Grade C B A Run 

92.29 17.42 –1 –1 –1 1 

86.36 19.7 –1 –1 1 2 

96.31 17.05 –1 1 –1 3 

90.5 20.74 –1 1 1 4 

90.67 19.84 1 –1 –1 5 

86.26 22.13 1 –1 1 6 

93.8 20.22 1 1 –1 7 

90.84 23.08 1 1 1 8 

91.33 21.02 0 0 0 9 

91.89 20.91 0 0 0 10 

93.01 19.97 0 0 0 11 

 

Statistical software was applied to specify the optimal conditions by considering 

data and calculations achieved from the factorial design. The recovery and grade 

together were taken as criteria and the possible highest points selected for numerical 

determination of the optimal condition. According to the experimental study, 90.84% 

of recovery and 23.08% of grade were obtained at the high level of variables. It is 

known that the best separation results for a set of experiments can be determined by 

using the upgrading curves, which consist of the grade-recovery plot known as the 

Halbich curve (Drzymala, 2006). The reason for this is that the Halbich curve has 

some advantages over other upgrading curves because it considers two essential 

parameters of separation results, which are recovery and grade. The Halbich plot for 

all 11 experimental points is presented in Table 9, and seen in Fig. 12. Each straight 

line connects data points obtained for a constant level of both air and wash water rates, 

and increasing of froth height. The line Lb approximates the data points obtained for 

experiments conducted three times at the zero level of all parameters. The best results 

are those forming an upgrading line which is the closest to the ideal separation line. 

This occurs at the L1 line which represents flotation results obtained for runs 7 and 8 

conducted at the increasing amount of the froth height and constant (higher) level of 

air and constant (higher) level of the wash water rates. 

 

Fig 12. The Halbich upgrading curve with the results of all experiments 
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The same conclusion can be achieved considering the optimum level of the 

investigated parameters via the use of not only the direct flotation results, but also the 

data generated with Eqs. 1 and 2, and plotted on the Halbich curve. It means that these 

Eqs. coupled with the GA can be useful for finding optimum flotation conditions 

provided that a proper criterion for the optimum conditions is applied. The optimum 

results obtained from the GA optimization is close to the points on line L1 in the 

Halbich curve. 

Conclusions 

In this paper, a new numerical approach based on genetic algorithm (GA) for 

optimization of column flotation was investigated. The multivariate non-linear 

regression model (MNLR) used to describe column flotation metallurgical 

performance was non-linear and of high dimensionality. Such characteristics 

motivated the use of GA, an evolutionary method, to optimize the model, since 

deterministic methods have proved to be unsuccessful in dealing with models of high 

non-linearity and dimensionality. The GA model was used coupled with the MNLR 

model (as a fitness function) of the column flotation. In this work, the optimization 

problem was defined as finding the best values for the froth height, chemical reagent 

dosage, wash water, and air flow rates, air holdup, and Cu grade in rougher and 

column feed streams. The GA parameters fitted values led to the final optimization 

run, which found the best eight input process variables values that conduct to the 

maximal productivity of flotation column. The proposed GA found accurately the best 

values of flotation column model variables with error 9.11·10
-13

. Then, the optimal 

conditions for the flotation were determined by taking into account both recovery and 

grade simultaneously using the Halbich plot. According to the plot, the best results for 

the optimization were close to the ones obtained with the GA. The high computational 

time-demand was not observed in the present application, and this act made the GA 

appropriate for a real-time implementation. The case study of optimizing variables for 

a column flotation process using the GA showed that the GA is a powerful and robust 

multivariable search method which can be used effectively to find the best values of 

operating parameters. Regarding the importance of process optimization, 

incorporating GA algorithms into mineral processing simulators can be a great help to 

possible users at control plant. 
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